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THE STUDY OF ULTRASONIC WAVEFORM
BY OPTICAL METHODS*
by E. A. HiepEmann
Department of Physics, Michigan State University, East Lansing, Michigan, U.S.A.

and K. L. ZankeL
Department of Physics, University of Oregon, Eugene, Oregon, U.S.A.

Summary

A discussion is given of the experimental and theoretical aspects of the optical methods
for studying the waveform of ultrasonic waves in liquids. The relative merits of these

methods are given.

Zusammenfassung

Die experimentellen und theoretischen Grundlagen der optischen Methoden zur Unter-
suchung der Wellenform von Ultraschallwellen in Fliissigkeiten werden erortert. Die spe-
ziellen Vorteile dieser Methoden werden miteinander verglichen.

Sommaire

On discute au double point de vue théorique et expérimental les différentes méthodes
optiques employées pour étudier la forme d’une onde ultra-sonore se propageant dans un
liquide. On compare les mérites individuels de ces méthodes.

1. Introduction

The study of the waveform of ultrasonic waves
travelling in liquids has increased in significance in
the past few years since there has been both direct
and indirect evidence that waves become distorted
when progressing in these liquids. Studies of the
waveforms of these distorted waves are important

_"Trh;v;;rk was supported by the Office of Naval
Research, U.S. Navy.

to an understanding of the processes which lead to
this distortion. In a recent publication, ZareEmBo
and Krasit'sixov [1] reviewed research concerning
this “finite amplitude distortion”. Optical methods
have played an important role in the experimental
investigation of this distortion, since these methods
appear to be both sensitive and accurate, and have
the advantage that the measuring device does not
disturb the sound field. An attempt will be made
here to discus optical methods for determining wave-
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form, to compare these methods, to show how they
are related and to discuss possibilities for further
measurements. The theoretical behavior of finite
amplitude distortion will not be described here. For
further information on that subject the reader is
referred to the review by ZaremBo and Krasiu'Nikov
and to the references given in that review.

2. General observations

The optical methods used to study the waveform
of ultrasonic waves utilize the diffraction by plane
ultrasonic waves of collimated light incident normal
to the ultrasonic waves. In these methods, the as-
sumption is made that the light is phase modulated
as it passes through the ultrasonic waves. This be-
havior is illustrated schematically in Figs. 1 and 2.
Fig. 1 indicates this behavior for a sinusoidal ultra-
sonic wave. A collimated light beam is shown tra-
veling in the z-direction through the ultrasonic

light

o

enteri
wavefmi

emenrging
wavefront

Fig.1. Schematic diagram of the wavefronts of light
before and after passing through a sinusoidal
ultrasonic wave.

wave which is progressing in the z-direction. The
wavefront of the impinging light is a plane re-
presented by the vertical line in the figure and the
ultrasonic wavefronts are planes represented by the
short horizontal lines, the heavy lines representing
condensations and the light ones representing rare-
factions. The light passing through the condensa-
tions is retarded relative to that passing through the
rarefactions. If the light is not bent significantly as
it passes through the ultrasonic beam, the resulting
wavefront is corrugated and has the same form as
the ultrasonic wave, i.e. the light is phase modu-
lated. For a sinusoidal ultrasonic wave the modula-
tion is sinusoidal; for a distorted ultrasonic wave,
the resulting light wavefront contains a correspond-
ing distortion. As an example, Fig. 2 illustrates the
behavior of a triangular ultrasonic wave. The am-
plitudes of the corrugations shown in these figures

b o [ cawe, 5 08
./ —r—

entening emerging

wavefront | —8— wavefront

Fig.2. Schematic diagram of the wavefronts of light
before and after passing through a triangular
ultrasonic wave.

are greatly exaggerated, since the changes in index
of refraction produced by the ultrasonic waves are
quite small.

The condition for considering the resulting wave-
front to be phase modulated is discussed mathemati-
cally by ExterMaNN and Wannier [2] and Miknal-
rov and Snurirov [3]. For sinusoidal waves this
condition becomes

2m2 L2 0/ A2y <1, (1)
and for the triangular wave
A2 pg <1, (2)

where L is the path length of light through the ultra-
sonic wave of wavelength A*, x’ is the maximum
change of index of refraction produced by the ultra-
sonic wave, u, the index of refraction of the un-
disturbed medium and b is the shortest distance
between a rarefaction and condensation for a tri-
angular wave.

In practice the light wave has finite dimensions.
A dimension of particular interest is its width D in
the z-direction. Raman and Nata [4] predicted that,
for periodic ultrasonic waves, if D is very much
greater than the fundamental sound wave length 2°,
then the light is diffracted at discrete angles 0 (see
Fig. 1) given by

sinf@= —ni/2*, (3)

where 4 is the wave length of the light and n is any
integer positive, negative or zero. The intensity
distribution in the diffraction orders for sinusoidal
ultrasonic waves is also given by this theory. It can
be seen from the development in Section 3 that the
separate diffraction orders can be resolved for a D
of several wavelengths. The assumption that the
waveform is periodic restricts eq. (3) and the fol-
lowing discussion to ultrasonic waves which do not
change noticeably over the width of the light beam
D. D can usually be chosen so that this condition
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is satisfied for waves undergoing finite amplitude
distortion. If D is less than 4*, distinct orders of
diffraction are not obtained and the intensity distri-
bution over 0 is continuous. Such a pattern is com-
monly referred to as a broadened image.

Fig. 3 illustrates this behavior for wide and nar-
now beams of light. Fig. 3 a is a photograph of a

(b)

Fig.3. Photographs of typical ultrasonic diffraction
patterns observed using (a) a wide light beam
and (b) a narrow light beam. Harcrove, ZaNkeL
and Hiepemany [15].

diffraction pattern obtained when a wide beam of
light was used. (A one Mc/s progressive ultrasonic
wave travelling in water produced this pattern.)
Fig. 3b is a photograph taken of a diffraction pat-
tern produced by the same ultrasonic wave when the
light beam width was limited to one quarter of a
sound wave length. In general, the patterns produc-
ed using a narrow beam of light appear to be
blurred images of the discrete diffraction patterns
which would have resulted from the use of a wide
beam of light.

For normal incidence of light, sinusoidal ultra-
sonic waves produce symmetrical diffraction pat-

E. A. HIEDEMANN and K. L.ZANKEL:
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terns. Since distorted ultrasonic waves may not con-
tain the symmetry of sinusoidal waves, one might
expect that resulting diffraction patterns would not
be symmetrical in 0. Although an earlier suggestion
was made by LoeBer and Hiepemann [5] that the
asymmetry in a broadened image could be related
to finite amplitude distortion of an ultrasonic wave,
Breazeare and Hiepemann [6], [7] were the first
to successfully relate such asymmetries to wave di-
stortion. They showed that this asymmetry increased
as the distortion increased, i. e. with increased ultra-
sonic pressure and propagation distance. Patterns
of this type which were recently obtained by
BreazeaLE [8] are shown in Fig. 4. These pictures
clearly indicate that the broadened images, which
were produced by progressive waves, become more
asymmetrical when the distance and/or sound pres-
sure is increased.

The first quantitative measurements of finite
amplitude distortion by optical methods were made
independently by MiknaiLov and Suurirov [3], [9],
[10] and Zanker and Hiepemany [11] to [13].
Both of these experiments utilized the study of
diserete diffraction patterns, but the methods of
interpreting these patterns were quite different. Pic-
tures of this type of diffraction, which were made
by BreazeaLe [8], are shown in Fig. 5. A picture
similar to this was given by Miknaov and
SuuriLov [9]. The pictures in Figs. 4 and 5 were
taken under identical experimental conditions except
for the width of the light beam D. It should be
noted again that the diffraction patterns obtained

Sound path —>

<—— Sound intensity

)
-3
e
8

Fig. 4. Photographs of diffraction of a narrow beam of light, D =A4*/2, by a 1,76 Mc/s ultrasonic wave progressing
in water for various sound intensities and distances. Breazeare [8].
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Sound path ——>

<—— Sound intensity

Fig. 5. Photographs similar to those of Fig. 4 using a wide beam of light. Breazeare [8].

using the narrow beam appear to be blurred images
of those obtained using wide beams.

Other optical methods which have since been
developed will be discussed following a more de-
tailed explanation of the methods of MiknaiLov and
SnvuriLov and of ZankeL and HiepEMANN.

3. Theory of optical methods !

In order to correlate the observed diffraction
effects and waveform in greater detail it is neces-
sary to extend the Raman-Natn theory to include the
case of arbitrary waveform and arbitrary beam
width D. Since the studies of waveform have been
mainly confined to progressive waves, stationary
waves will not be discussed further in this paper.
General principles which apply to these methods will
be discussed here and each method will later be
treated as a specific application of the more general
principles.

Assuming that the ultrasonic waveform does not
change in the region D, the wave may be resolved
into its fundamental and higher harmonic compo-
nents. The additional assumption that the change of
index of refraction is proportional to the instanta-
neous change of pressure, leads to the result that the
emerging wavefront has a form which can be re-

! The equations given here are taken from [11],
[13], [14] and [15].

solved into the same FouriEr components as the
ultrasonic wave, with a constant of proportionality
between the two which can be determined experi-
mentally or predicted theoretically. For distorted
finite amplitude waves, it has been predicted that
the odd harmonics are in phase and the even har-
monics are 180° out of phase with the fundamental.
The change of index of refractior. could, for this
case, be written as

Ap= ia,,usin2nj[v’t— (=/2%) 1, 4)
1=1

where p is the maximum change of index of refrac-
tion produced by the fundamental component of the
ultrasonic wave, »"* is the frequency of the funda-
mental and g; is the ratio of the amplitude of the jtt
harmonic component to that of the fundamental.

The diffraction pattern resulting from a wave-
front produced by such an ultrasonic wave may be
obtained by integrating the contributions of each
portion of the wavefront in the interval D. For a
distorted finite amplitude wave the light intensity
as a function of ¢ at a particular angle 0 is

I(t) = i Dy Dy Wy Wpcos2n(n—-m)r*t, (5)

where
¢,|= Z .’n—?ko-ﬂk-... (v) Jh(a!v) J"l(aﬂv) i
Fog kg ki k= —00 (6)

Ja(v) is the n*" order Besser function of argument v,

—_—
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and W, is given by
innG(H +n)
W.— sm:\:w ARl (7)
" aGH+n)

G is the ratio of light beam width to sound wave-
length and H is defined by

sin@=H /A" . (8)

It is seen that H is the deflection in terms of sepa-
ration of diffraction orders were they present and,
since 0 is very small, H is approximately proportio-
nal to 6 . The Raman-NaTH parameter v is given by

v=2xuL/i. 9)

As was indicated previously, these results assuine
that each harmonic is either in phase or 180° out
of phase with the fundamental. For arbitrary phase,
cosine terms must be considered in the Fourier
series description of Ax. The time average light
intensity is found from eq. (5) to be

o0
1= D.2W,2. (10)
n=—oco
For G > 1, that is, wide light beams, the light inten-
sity is independent of time and gives discrete orders
at angles 0 given by

sin@= —ni/*, (3)

and of intensity 2
I,=P,2. (11)

This special case applies to the study of ultrasonic
waveform by observation of discrete orders of dif-
fraction. For sinusoidal waves, @, reduces to the
BesseL Function predicted by Raman and Natn. It
is seen that the broadened image predicted by eq.
(10) can be thought of as being produced by the
discrete orders predicted by eq. (11) which are
broadened by the weighting function W,2. This
produces the blurring which was referred to in the
discussion of Figs. 3, 4 and 5.

4. Studies of discrete diffraction spectra

Studies of waveform using discrete diffraction
spectra produced by distorted finite amplitude waves
were made independently by Miknamov and
Suutirov [3], [9], [10] and Zanker and Hiepe-
MANN [11] to [13]. Since the interpretation of
their results differed, their methods will be treated
separately.

The sound waves used by MikuaiLov and Swurr-
Lov were of considerably higher intensity than those
used by Zanker and Hiepemann. Using ultrasonic
waves producing a large number of orders, they

2 This result for two superposed waves was first
obtained by Mertens [16].
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observed that there is a position of maximum inten-
sity on each side of the diffraction spectrum. For
sinusoidal waves these maxima are symmetric about
the zero order. For example, the orders of maximum
intensity in Fig.3 are plus and minus five. For
distorted waves these maxima do not occur symme-
trically, i.e. the maxima do not occur at equal
distances from the zero order and one maximum is
brighter than the other. This is illustrated in
Fig. 6 a. Fig. 6b is a photogram of this image. In
some cases the dim maximum cannot be distin-
guished as a maximum, as is illustrated by the pat-

J =19,2 Wicm?
D=5cm
7=0.

A72
Fig. 6. Construction of the relative waveform from opti-

cal data. Both intensity maxima visible.
Suutiov [10].

tern in Fig. 7a. Miknaiov and SHutiLov used the
positions of maxima in interpreting their results.

For sinusoidal waves, and a large number of
orders, the angular position 0, of a maximum is
approximately proportional to the maximum abso-
lute value of gradient of sound pressure. A sinusoi-
dal wave may be approximated by a symmetric tri-
angular wave, with slopes equal to the maximum
sound pressure gradients. To a good approximation
the 0,,’s predicted for the sinusoidal wave would be
the same as those predicted for the triangular wave.
MixnaiLov and SuutiLov suggested that a distorted
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wave could be approximated by an asymmetric tri-
angular wave. The two positions 6, of maximum
intensity could then be determined from the two
slopes of the triangle, with the constant of propor-
tionality being the same as that experimentally de-
termined for sinusoidal waves. Triangular models of
the ultrasonic waveforms which produced the dif-
fraction patterns are given in Figs. 6¢ and 7c. A
possibility for the actual form of the wave is illu-
strated by the dashed line in Fig. 7 c.

J=152 Wicm?
0=30c¢m
y=07

L
.
A'
Fig. 7. Construction of the relative waveform from opti-

cal data. One intensity maximum visible.
SuuriLov [10].

To obtain further results by this method, additio-
nal information was needed. This information was
furnished by knowledge of the behavior of finite
amplitude distortion, Miknaov and SuutiLOV
assumed that the crests of the ultrasonic waves
moved at a constant rate which was faster than that
of the troughs. The model thus obtained is that of
a triangle, originally isoceles, which approaches a
saw-tooth in form as it progresses. These studies
were made under conditions of low ultrasonic ab-
sorption, and the assumption was made that absorp-
tion effects could be neglected. This research led to
determinations of distortion and a distortion para-
meter for water which were in reasonable agree.
ment with theory.

Further evidence of the validity of this method
was given. To determine a measure of distortion the

6 on one side of the zero order only is needed. The
0 on the other side was used as a check of consi-
stency. There was also agreement between theory
and measurements of distortion at different sound
pressures and distances.

The simplicity of the method recommends its use
in obtaining information about the maximum abso-
lute values of the pressure gradient. The method is
obviously less useful for studies of detailed wave-
form. If more detailed information about the di-
stortion is desired, one should use other methods
which may require, however, more tedious calcula-
tions.

Clearly, more information could be obtained by
studying the relative light intensity in all of the
diffraction orders, rather than by simply determining
0y, . In order to do this the triangular approximation
can no longer be used. One may resort instead to
a comparison of eq. (11) with experiment. ZANKEL
and Hiepemann used this method of approach to
study finite amplitude distortion. They measured the
intensity of light in the first three positive and first
three negative diffraction orders. Since their studies
were confined to relatively low sound intensities
where few orders were observable, most of the in-
formation was contained in these orders. In addi-
tion, they also relied on theories on finite amplitude
distortion to furnish additional information in order
to simplify comparisons. The method consisted in
measuring the intensities of the diffracted orders.
These values were then compared with those obtain-
ed from eq. (11) by varying the distortion para-
meter until the calculated intensities agreed with
those measured. The distortion and the distortion
parameter obtained for carbon tetrachloride were in
reasonable agreement with theory. Several examples
of the comparison between theory and experiment
are shown in Fig. 8. These figures are plots of theo-
retical (lines) and experimental (dots) light inten-
sities as a function of fundamental ultrasonic pres-
sure. The curves are for various distances and
orders using a single distortion parameter for all
the curves. Deviations between theory and experi-
ment can be explained by approximations made in
the treatment of the prediction of the finite ampli-
tude distortion, which become less valid at higher
ultrasonic intensities.

As has been mentioned, this method has the ad-
vantage that it yields more detailed information
about the wave form. Also one need not be con-
cerned about the effect of absorption, and indeed
this method was used under conditions in which
absorption was very significant. The disadvantages
of this method are that the calculations are tedious,
and that the method of varying parameters until
agreement is obtained may not always be practical.

PYIRSNIROMPPIENMIRIREE ¥* 15 - L i
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g 40 ’@ = (The latter was not significant for the work of Zan-
?30_ e o KEL and HIEDEMANN since interpretation of their
: 2 results required only one parameter which is a

.ézo- property of the liquid used.)
% A further difference between the two methods
&0l s il should be mentioned. Eq. (11) assumes that the aver-
O\ age sound intensity is constant throughout the cross
% : '2 5 i : e section of the light beam. It also assumes that the
| . ; ) le—»" ; ) waveform does not change significantly over the
0 o1 02 0,: _»0,‘* 05  Obatm light beam width D. In most cases the structures

1

; of the sound beam is noticeable. The observed dif-
3 fraction pattern can then be thought of as being the
: sum of patierns produced by sections of the beam
which are homogeneous. This tends to remove some
of the detailed structure necessary for complete utili-
zation of eq.(11). To remove this difficulty, ZANKEL
and HiepEMANN limited the light beam dimensions so
that the beam passed through portions of the sound
wave which could be considered nearly homo-
geneous. SHuUTILOV observed that his diffraction pat-
terns sometimes contained localized minima near
0., . BreazeaLe [8] has shown that these minima
become quite pronounced when the light beam width

L
FL)
o

/r
-
Percent infensity ——
- ) w
o o o
OF ' Qpr———r ==

i T o is limited (see Fig. 5).
a 220 It appears that for the method of evaluation used
2 by Miknamov and SuuriLov a large number of
‘.210 orders and a large amount of asymmetry are neces-
A £ sary. Their method is thus valid for high ultrasonic
% 0% r 2 3 7 5 6 pressures, and their work was limited to such a re- :
: : f YT : ; gion. The more detailed method of evaluation does :
0 01 02 03 (o] 05 06 atm not contain such a limitation and was, therefore, ’:
s e found useful at relatively low amplitudes in the 3}
presence of low distortion. :
20 @ . It has been mentioned that the procedure of vary-
1 0k negative onder ing parameters used by ZankeL and HiepEMANN may ;
> not be practical for all cases. A method of quickly ]
£} determining the second harmonic content of distort- ]
- ed waves has recently been suggested by HarGcroVE :
10 ihe orei 3o : L [17]. He observed that if all harmonics higher than i
i b > p the second are neglected and that if the phase be- i
% T 2 3 7 3 6 tween the harmonic and fundamental is either zero :
: 2 5 v , or 180°, then the average value of the intensities of i
e 0 of 02 2'3_’01“ 05  Obatm the first orders calculated from eq. (11) is inde- ]
: pendent of a, (the percent of second harmonic) §
when v=2,40. He also observed that there are
_' wE ® D simple, almost linear, relationships between the {
" T *\-negative order intensities of each of these first orders and a, . This ‘
330
Exl
2 ;, Fig.8. The light intensity of various diffraction orders
§10- s as a function of_ ultrasonic pressure. Points are
positive order o experimental; lines theoretical: (a) first orders
- 0 . : \e L s at 3 Mc/s and 7 cm, (b) second orders at 3 Mc/s
0 1 2 3 4 5 6 and 7cm, (c) third orders at 3 Mc/s and 7 cm,
' é ’ e g ! 3 (d) first orders at 3 Mc/s and 14 cm, and (e)
| 0 o 02 03 04 05atmO0b first orders at 3 Mc/s and 21 cm. ZankeL and
' Hiepemann [11]. :




220 E. A. HIEDEMANN and K. L. ZANKEL: STUDY OF ULTRASONIC WAVEFORM

"= 2,160 n=-1

85 B

3
T

Light intensitu 7 ——se

n=+

-
o
T

0 ] 1 1 i
0 5 10 15 20
Percent second harmonic ref. =240+
Fig.9. Calculated light intensity in the first orders as
a function of percent second harmonic for
v=2,40. Harcrove [17].

is shown in Fig. 9. It is seen that the intensity in
each of these orders is quite sensitive to the amount
of second harmonic present. His procedure is as fol-
lows. First the intensity at the transducer is varied
until I, +1_, =0,542. This corresponds to v = 2,40.
Then, with the knowledge of /, and I _, , the percent-
age of second harmonic is read directly from Fig. 9.
It is recognized that this method works at only one
value of » and that it assumes no harmonics higher
than the second. However, this method is relatively
unexplored and it may be possible to find criteria
for other values of v, which might include higher
harmonics, and which would make this method more
flexible.

Another direct method of interpreting diffraction
results has been suggested by Coox [18], [19].
This method is more involved than that suggested by
HaArGRrOVE, but is more complete. Cook found that,
under the conditions previously stated,

cos(2mAp LfA) = i D, cos{2mn[r*t— (z/2*)]}

Nn=—00 (12)
and
sin(2x Au LfA) = Z D, sin{2an[v*t— (z/A*)]}.
B (13)

Since the @,’s can be determined experimentally,
Ap can be computed as a function of z and ¢, the-
reby giving the waveform. This result contains the
assumption that the phases between fundamental
and harmonic components are either zero or 180°.
Actually @,2 is measured, but since the approxi-
mate value is usually known, the proper sign may
be assigned.

Since no measurements have been made using this
method, evaluation of this method can only be spe-
culative. It certainly appears that this method is
more direct than that of Zasker and HiepEmanx.
However, the accuracy of measurements made by
this method, as well as by the method suggested by
Harcrove, depends directly on the accuracy of light

ACUSTICA
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intensity measurements, while those of ZANKEL and
HiepEmANN are based mainly on shapes of curves.

Even with recent developments, the interpreta-
tion of experimental results for obtaining detailed
information about waveforms can be very tedious.
Two methods using wide beams of light have been
attempted which do not require tedious calculations
for the determination of ultrasonic waveform: the
use of a transmission plate, and diffraction by two
parallel ultrasonic beams. The utilization of a trans-
mission plate for this purpose was developed in-
dependently by MiknamLov and SuuriLov [20] and
by ZankeL and Hiepemann [21]. Essentially the
method developed by both groups is the same and,
aside from the method of detection. is quite similar
to a procedure previously used by Zaremso,
Krasi’Nikov and Sukrovskaia-Koror [22] for de-
termining waveforms by a non-optical method.

It is known that a thin plate placed in a sound
beam will, at certain angles of incidence, pass sound
of certain frequencies while reflecting other fre-

100

Percent transmission—
w
S

75
Angle in degrees—>

Fig.10. The transmission coefficients of a certain stec!
plate in CCl, at 3 and 6 Mc/s as a function of
the angle between the plate and the sound.
ZankeL and Hiepemany [21].

quencies. Fig. 10 is an example of the transmission
coefficients of a particular 1 mm steel plate as a
function of incident angle for 3 Mc/s and 6 Mc/s
ultrasonic waves in CCly. Starting with a 3 Mc/s
sound signal, ZankeL and Hiepemann [21] allowed
the signal to travel far enough to become signi-
ficantly distorted and then pass through the trans-
mission plate. Fig. 11 shows the resulting diffraction
patterns when light passes through the sound imme-
diately behind the plate. Fig. 11 a is a picture taken
when the plate was at an angle at which the funda-
mental could be transmitted. Fig. 11b is taken at
an angle at which most of the fundamental is re-
flected and the second harmonic was transmitted.
It is seen that the spacing between diffraction orders
is doubled, as would be the case when the ultrasonic
frequency is doubled. By measuring the light inten-
sity as a function of sound pressure, they observed
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Fig.11. Photographs of diffraction from the fundamen-
tal and second harmonic components of an
ultrasonic wave obtained with the use of an
acoustic filter. Zanker and Hiepemany [21].

that when moderate pressures were used the second
harmonic component of the distorted wave was pro-
portional (within the experimental accuracy) to the
square of the sound pressure.

Miknaiov and SuutiLov [20] were able to ob-
serve harmonics as high as the sixth by using trans-
mission plates of various thicknesses placed at right
angles to sound beams in water, although in this
case the fundamental component :ransmitted was
not always negligible. No quantitative measure-
ments of waveform were made in their studies, al-
though an increase of finite amplitude distortion
with distance was indicated. Recently Aprer [23]
used this method to measure distortion parameters
in xylene and water.

The transmission plate method of measuring has
the advantage over the other methods that the
measurements are more direct, and do not depend
upon detailed comparisons. It is probably the most
sensitive method described here. By using such a
calibrated transmission plate, Zaxker and Hiepe-
MANN were able to detect much lower levels of di-
stortion than by the other methods. For meaningful
measurements of finite amplitude distortion it is
necessary to avoid multiple reflections between the
plate and the transducer.

The use of a transmission plate has the disadvant-
age of the presence of an object in the sound field;
however, the measurement of the intensities of dif-
fracted orders and the interpretation of these can be
tedious if no such plate is used. ZankeL [24] sug-
gested a method that has the advantages of easy
interpretation without the disadvantage of place-
ment of an object in the sound field. Tt was pre-
dicted by Lucas [25] that if a sinusoidal sound
beam travelled parallel to and 180° out of phase with
another identical beam, there would be no diffrac-
tion of light passing through them, i.e. the diffrac-
tion effects would cancel. ZANkEL was able to obtain
near cancellation in this manner. He also showed
that when the fundamental components of distorted
waves were 1807 out of phase. the even harmonics
were in phase, resulting in a diffraction pattern in
which the spacing is doubled. Fig.12a is a dif-
fraction pattern obtained using one transducer.
Fig. 12 b is that obtained using the same transducer
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(a)

(b)

Fig. 12. Photographs of the diffraction spectrum pro-
duced by (a) a single distorted 2 Mc/s ultra-
sonic wave with about 0,6 atm of sound pres-
sure and (b) two such waves parallel and
with fundamental components 180° out of
phase. ZankeL [24].

nearly adjacent to another one which had its funda-
mental 180° out of phase.

ZankeL's method has been used by Maver and
Hiepemany [29] to study finite amplitude distortion
in more detail. They found that it was possible to
demonstrate the growth of the second harmonic
with distance and intensity by observing the light
intensity in the zero and the second diffraction
orders. The intensities of these orders for various
distances from 1 Mc/s transducers as functions of
the Raman-Naru parameter of the “cancelled” fun-
damentals are given in Fig. 13. From these inten-

100, St
15cm
T 80[
,;‘ ’}: 35em  30em
E 9 ——— 2zero order
£ [ =--- second order
240t 4Sem
L
<
& 20t
0
0 1

Raman -Nath Parameter v,=y, —®

Fig.13. Light intensity in zero order and second order
vs Raman-Natn parameter (voltage across the
transducers) for different distances. Maver and
Hiepemany [29].

sities it was possible to determine how the ratio of
the amplitude of the second harmonic to that of the
fundamental varied with distance. ZANKEL as well as
Maver and Hiebemann observed that the cancella-
tion is often not complete. A possible explanation
for this is that the light is no longer perpendicularly
incident on the second ultrasonic beam, and there-
fore only under special conditions will the cancella-
tion be complete.

Recently Mertens [30] theoretically studied the
behavior of two adjacent parallel ultrasonic waves,
one of which is a harmonic of the other. He pre-
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dicted conditions for which the adjacent beams
would behave as if superposed. For the cancellation
experiments performed these conditions are similar
to those imposed by eq. (1). One must also make
allowances if the waves are not quite adjacent.
Another difficulty encountered in the cancellation
experiments was due to inhomogeneities in the
ultrasonic fields.

5. Studies of the broadened image

It has been stated previously that the study of
broadened images by Breazeavre [6], [7] first esta-
blished a qualitative relationship between the asym-
metry in diffraction patterns and finite amplitude
distortion. However, the studies of the broadened
image for quantitative measurements of waveform
came after the successes of studies of discrete
diffracted orders. The reason for this is that although
diffraction using wide beams of light and sinusoidal
ultrasonic waves was theoretically understood pre-
viously, a theoretical understanding of the broaden-
ing produced by sinusoidal waves and experimental
verification of this has come about only recently
[14].

A successful quantitative study of the broadened
image for the purpose of determining waveform of
finite amplitude waves has been made by HAarcrove
[26]. In this study he used discrete diffraction to
determine the waveform, and then compared this
result with results using the broadened image. The
discrete diffracted orders were used to determine the
amount of second harmonic present when he held
v=2,40 at various distances. This was done using
the method which requires only measurement of the
first orders of diffraction. Then, still assuming that
harmonics higher than the second could be neglect-
ed, he calculated broadened images using eq. (10)
and the values of v and a, determined from discrete
diffraction. These theoretical values were compared
with experimental ones. Fig. 14 contains compari-
sons between theoretical (circles) and experimental
(lines) values so obtained for D =A4*/2. If one con-
siders that the experimental difficulties encountered
include some of those using discrete diffraction and
in addition require precise alignment of the slits
used (to limit the light beam width and photomulti-
plier slit to the wave fronts) the agreement between
experiment and theory are very satisfactory. As an
added check, the second harmonics were also meas-
ured by the filter plate method. At distances large
enough that multiple reflections between source and
plate were less significant, agreement was obtained.
In these experiments, the multiple reflections ap-
peared to make the filter plate measurements the
least reliable of the three used.
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Fig. 14. Calculated (circles) and experimental (lines)
light intensity I as a function of 0 for D =4*/2,
for v=2,40 and for (a) 5% second harmonic,
(b) 10% second harmonic and (c) 15% second

harmonic. Harcrove [26].

There have been attempts to measure the light
intensity at a particular portion of the broadened
image (fixed 0) as a function of time [27], [28].
These measurements have also been attempted with
stroboscopic light. Since these measurements were
made previous to the derivation of eq. (5), their
interpretations were essentially qualitative in nature,
and therefore little will be said about these here.
These methods have one common characteristic. By
looking at the light as a function of time, one essen-
tially looks at the diffraction by one small part of
the wave at a given instant. Methods of this type
might be more sensitive to phase differences between
harmonic components than the other studies men-
tioned and may offer a more direct way of measur-
ing these phase differences. Adaptations of eq. (5)
which include arbitrary phase have been made by
Cook [19].

6. Resume

An attempt has been made to discuss the relative
merits of various optical methods for determining
waveform. The wide light beam methods are more
developed and have, therefore, been more success-
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ful. The straightforward method of measuring the
intensities in the diffracted orders and from this
inferring the waveform has been developed to the
extent that its usefulness in the study of finite am-
plitude distortion is established. The method of
interpreting the results suggested by ZankeL and
HiepEMANN is more complete than that suggested by
MiknaiLov and SuuriLov, but more tedious. The one
suggested by MikuaiLov and SuutiLov yields less
information about the waveform and is limited to
experiments in which a large number of diffraction
orders are formed, i. e. higher ultrasonic pressures.

The filter plate method is more quickly inter-
preted than the method just mentioned, but has the
disadvantage of placement of an object in the sound
beam which affects the beam. The method utilizing
parallel beams for cancellation appears difficult
experimentally.

The narrow light beam methods are relatively
unexplored. BreazeaLe and Hiepemann, and Har-
GROVE have given experimental evidence which indi-
cates that studies of the broadened image can result
in determinations of waveform.
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Appendix to Section I. page 15.

ON THE DIFFRACTION OF LIGHT BY AN ULTRASONIC WAVE WITH
ARBITRARY WAVEFORM
:by
L. E. Hargrove

Let the change in index of refraction be expressed by

ap(x,t) = 2 pay sin [2r(d*6 - x/5*)) + 08,1, (1)

J=1

where/Ajs the peak change in refractive index caused by the funda~-

- mental component and aJ is the ratio of the Jjth harmonic component
amplitude to that of the fundamental. Note the inclusion of the
phase factor 535 we are not limited to ultrasonic waveforms expres-
sible by a Fourier sine series. Assuming that the conditions for
validity of the elementary Raman-Nath theory are fulfilled, the light
wavefront emerging from the sound field is expressed by

£ @
a = exp i::ggéé- Jfl poy sin [2m(J*t - x/3*)3 + SJ]} exp (2mipdt).

(2)
Since exp Z A, = Tlexp A, Eq. (2) may be written as
k k
co
a= "T[ exp {-ivaJ sin [2m(y*t ~ x/\*)J + SJ]%-exp (erint) . (3)
J=1 -
We now use the identity

exp (ia sin b) = exp [ -1a sin(-b)] = +§; Jp(a) exp (-ipb) (4)
p=-e

to express Eq. (3) in the form

©
a = s J, (va,) exp [-2mik,(d*t - x/\*)J - 1k,6,]

exp (2midt). (5)
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or, by rearrangement of terms,

0 +@
a=JU z J (va,) exp (-ik,5,)
=1 ko K J 3
exp [2mi(p - kab*)t + 21r1Jka/;*] ; (6)

In eq. (6) a term for particular kJ and J represents a light
component progressing in the direction satisfying

sin ekJ = =Jky %/ ¥ (7)
having optical frequency'J- ka)* . We may drop the time and space

dependence in Eq. (6) to obtain

o (va,) exp (=1k,5.) (8)
al = 3 b dJ va exp (-ik,b .

J=1 kJ=-w kJ J b
e wish to select only those terms from Eq. (8) which represent
«ight propagating in the directlion sin en = -n)/)f in order to
;alculate the amplitude of the nth diffraction order. Only one
serm in the summation for a particular value of J represents light
propagating in a given direction. Let us choose a single term
from each of the summations and form the indicated product. We
obtain

B =J_  (v)J, (va,)J, (vay)...
kl,ka,... kl k2 2) k3 >

exp f1 (k)5 +k 0,450, + ... )] (9)

We must now choose the proper set of terms such as Eq. (9) which
must be combined to give the amplitude of the nth order of dif-
fraction. To select those terms representing light propagating

in the direction given by sin On = -nx/x* we must require that

k) +2k; +3ky + ... =n (10)

and then sum all terms which satisfy the condition in Eq. (10).
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We may proceed by allowing variation of all the kJ's except k1
and then require that kl be chosen to satisfy Eq. (10), that is,
require that

k =n “2k2 -3k = e s . (11)

. 1
4 The final expression for the amplitude of light in the nth order ’
g is then

1

+ 0
f=22 2 ..z

(v) 3, (va,) J, (vaz)
k23k3’ ku, .o = D n‘21{2-3k3-4k4- o k2 2 k3 3

Jk4 (vau)... (times) exp [-1(ky8, + kg5 + Kysy + ... Y1 (12)

where 61, which may be arbitrarily chosen as a reference, is
chosen equal to zero. The light intensity 1s obtained from

|2 (13)

Iy = l ﬁn

e
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On the Theory of the Propagation of Plane, Finite Amplitude Waves in a
Dissipative Fluid

WirLiam W. LESTER
Depariment of Physics, Michigan State University, East Lansing, Michigan
(Received December 15, 1960)

The dissipationless theory for harmonic generation in an initially sinusoidal, plane, finite-amplitude wave
is used as a basis for calculation of the harmonic components of such a wave in a fluid with dissipation.
The assumption used is shown to lead approximately to the relationships of the Fox and Wallace theory.
The result is given as a Fourier series, with graphs of the first few harmonic components for two specific
cases. The series representation is valid for distances X <L, where L is the discontinuity distance for the

dissipationless case.
NOTATION

C’=Velocity of wave phase points.
Co=Sound velocity for infinitesimal amplitudes.
P=Pressure.
Py=1Internal (equilibrium) pressure.
p=Density.
po=Equilibrium density
A, B=Empirical constants in the equation of state.
X =Distance from origin of wave.
U =Particle velocity.
a=Infinitesimal amplitude absorption coefficient
for the fundamental frequency component.
f(n)=Factor by which « must be multiplied in
order to obtain the absorption coefficient of
the nth harmonic in the medium of interest.
»=Fundamental frequency.
L=Discontinuity distance for dissipationless
case.
K=X/L=Reduced distance.
K=10X/L.

P.(K)=Pressure amplitude of the nth harmonic
wave component, measured at reduced
distance K.

8.(K)=Harmonic generation parameter (Fox and
Wallace).

INTRODUCTION

X and Wallace! have presented a theory describing

the propagation of plane, finite-amplitude acoustic
waves in dissipative fluids. In their (large amplitude)
theory, an approximate calculation of the behavior of
the harmonic components of an initially sinusoidal
wave was made by considering the net change of the
nth harmonic pressure component in an interval K,

K+1, as?
Po(R+1)=P.(R) exp[s.(K)—~af(m)AX]. (1)

(I;F E. Fox and W. A. Wallace, J. Acoust. Soc. Am. 26, 994

* It was subsequently assumed that each harmonic could itself
undergo finite amplitude distortion, and a factor of the type
expd: (K) must multiply each second and third harmonic equation
of the type of s, This would seem unnecessary, as graphical
analysis of Et; 4) would rovide such distortion automatically;
see also Eq. (7), from whi the harmonic ratios are independent
of amplitude.

Here K41 and K denote the distance X in terms of
L/10 (L/10=AX), that is, one considers the end
points of the interval from KL/10 to (K+1)L/10.
The exps,(K) factors were obtained from a graphical
construction, utilizing the fact that the phase velocity
of the wave is given by the local values of (dP/dp)
and particle velocity?

C'=(dP/dp)*+U. 2
Assuming an equation of state to second-order terms
P=Py+A(p—po/po)+3B(p—po/p)?, (3)

one obtains

=Cot[14 (B/24)10, @

which is valid to terms of the first order in U.
One may equally well use the equation of state

P/Po=(p/pv)", ®)
which gives the phase velocity
=Co+[(v+1)/21U, (6)

with the same degree of approximation. In this case
of a gas, v is, of course, given by the ratio of the
specific heats; however, in the case of a liquid, ¥ may
be regarded as an empirical constant equivalent to
(B/A)+1, as is shown by Eqgs. (4) and (6).

The neglected terms in U? in Eq. (4) become com-
parable with the linear term given when U = 10* cm/sec,
assuming B/A =10, Co=10% cm/sec, po=~1 g/cc; this
corresponds to a wave of =~1000 atm pressure in a
typical liquid. If terms in U? must be included in Eq.
(4), the equation of state (3) would probably be
inadequate.

Keck and Beyer,* Fubini-Ghiron,® and Hargrove,®
have given a solution of the finite amplitude problem
for the dissipationless case which describes the harmonic
wave structure. This solution, for the case of an
initially sinusoidal wave, is given by Hargrove in the

3 Lord Rayleigh, The Theory of Sound (Dover Publications,
New York, 194§ Vol. II, Art. 253.
1‘Wmﬁeld Keck and Robert T. Beyer, Phys. Fluids 3, 346

(1960)
§ E. Fubini-Ghiron, Alta Frequenza 4, 530 (1935).
% Logan E. Hargrove, J. Acoust. Soc. Am. 32, Sll (1960).
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form

® (K

P(K)=2P,(0) & (~ i)
n=1 nK -
XSiIlZ‘l’ﬂ(ll‘——)‘—). @)

This result allows one to write a Fourier series for the
pressure components of a wave in a dissipative medium.’
It should be noted that Eq. (7) is based on the use of
Eq. (4), and is not valid for the case of excessively
large amplitudes. Furthermore, it is not valid for
K>1, ie., X>L, where L, the discontinuity distance
for the dissipationless case, is given by

i poCe®
=P, (0)[ (B/A)+2]

At this distance, the value of dP/dX becomes infinite
so that the pressure is not single valued.

It is the purpose of this paper to formulate a func-
tional solution of the finite amplitude problem for a
dissipative fluid by making use of the Fubini-Ghiron
result. It will be shown that this approach, which is
based on the assumption of Thuras, Jenkins, and
O’Neil,® gives approximately the results of the Fox
and Wallace theory for small distance or absorption,
and has the advantage that the results are expressible
in functions of a continuous variable.

®)

ANALYSIS

It is assumed that the absorptive and transfer
mechanisms for the various harmonic components
occur independently, as was assumed by Thuras,
Jenkins, and O’Neil. Thus, the decrease of the pressure
amplitude of the nth harmonic follows the usual
exponential law

(dP.(K)/ dK)apsorp=— f(n)aLP(K)ota- 9)

The total space rate of change of the amplitude of
a harmonic component may be taken as the sum of the
rates of change due to harmonic transfer and harmonic
absorption :

(@Pn(K)/dK )tota1= (@Pn(K)/dK )iranster
= f(m)aLPn(K)ota.  (10)

Before solving Eq. (10), note that this linear addition
leads approximately to the Fox and Wallace relations,
as is seen on conversion of Eq. (10) to a finite difference
relationship. For small K or al, one can assume
(Pn(K)transter/ Pn(K)tota) = 1, and can rewrite Eq. (10)
in the form

d(lnPn (K)totnl) =d(InP, (K)mmsfer) e af(n)dx. (1 1)

? This possibility has also been suggested by Keck and Beyer.¢
$A. L. Thuras, R. T. Jenkins, and H. T. O'Neil, J. Acoust.
Soc. Am. 6, 173 (1935).

In terms of the intervals proposed by Fox and Wallace,
we have

P.(R+1)=P,(K)
XeXp{ll’l[Pn(K"l‘o-l)/Pn(K)]transfu
—af(n)AX}, (12)

ln[Pn(K+0~1)/PH<K)]transfer=6n(K)y (13)

as can be verified numerically from Eq. (7) and the
graphically determined values from Fox and Wallace,
taking into account the change in sign of §,(K) which
they introduced.

Equation (10) may, therefore, be taken as approxi-
mately equivalent to the Fox and Wallace equations,
except for the inclusion of the factor exp[d;(K)] in
their result for the second and third harmonics, as
noted before.” Comparison shows, however, that 8, is
small in comparison with 8, or 8; for all but the largest
K values, so that this factor does not appreciably
change the equivalence.

but

SOLUTION
Integration of Eq. (10), using Eq. (7), gives an
integral equation of the second kind

1 n K =
P,.(K)=w-—)—f(n)aLf P, (K")dK'. (14)
nK 0

The solution of Eq. (14) by the method of successive
substitutions® (assuming «L approximately constant)
is an infinite alternating series for the sth harmonic
amplitude of the form

—Du(K)+En(K)—++-+---. (15)
The first five terms are found to be
An(K)=2P,(0)J n(nK)/nK, (16a)
2P,(0 al
3.y 2PAOT)
"2
XX 2J py2g(nK)—J(nK)), (16b)

4P,(0 a?l? «
CAK):& Z (241—1)1-+z¢—1("K), (16¢)
n =1

8P, lad AR
nt =1

16P,(0) f*(n)atL?
Ev(K)= 6.Py( )f.(")
n
leff "Z_o-’n+2(¢+r)+1(”K)- (16e)

*W. V. Lovitt, Linear Integral Equations (Dover Publications,
New York, 1950).
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The solution is thus expressible as the series
w® X
P(K)=3 (—1)"HP,(K) siann(vt—;), a17)
n=]

where the P,(K) are the harmonic amplitudes given
by Egs. (15)-(16). We must take note of the fact that,
as Eq. (7) holds only for K<1, Eq. (17) also holds
only in this region. For constant aL, the series Egs.
(15) and (16) converge absolutely and uniformly in
K<L1.

Terms following those given in Eqs. (16) may be
obtained by successively multiplying Eq. (16e) by
—2f(n)aL/n, adding 2541 to the order of the Bessel
function, and summing over s from zero to infinity.
The correction terms in Eqs. (16) are seen to cause
the predicted pressure in any harmonic to be less for
a given K value than that predicted by Eq. (7), as
expected.

DISCUSSION

For a given absorption law f(#) and reduced distance,
the solution is evidently a function only of the product
aL. Graphs of Eq. (15) for the fundamental, second
and third harmonic amplitudes are given in Figs. 1, 2,
and 3, with the curves from Eq. (7) (dissipationless)
for comparison. The al values specified for the figures
are 0.185 and 0.370. This corresponds to P;(0)=1.0
and 0.5 atm, respectively, in the case of water
at a frequency of 5 Mc/sec, taking f(n)=n* and
(B/A)=35; this value of B/A is given by Beyer' for
T =20°C. The dependence of the harmonics on distance
is that which one would expect; the second and third
harmonics cease growing at about the same K value
and decrease slowly at larger K values, which suggests
the phenomenon of “waveform stabilization.”

10 Robert T. Beyer, J. Acoust. Soc. Am. 32, 719 (1960).
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A comparison of the results of the present theory
with those of the Fox and Wallace theory has been
made for the fundamental and second harmonic
frequency components. The fundamental frequency
component, as calculated from the Fox and Wallace
theory with constant AX, yields graphs which very
nearly coincide with the curves of Fig. 1, the greatest
discrepancy being only AP,(K)=0.02, or 3%, at K=1
for aL.=0.370. In the case of the second harmonic,
calculations have been made from the Fox and Wallace
theory by assuming the dissipationless value for P,(0.1)
from Eq. (7), and then calculating forward with Eq.
(1) for constant AX. The results for the cases aL=0.185
and 0.370 are shown in Fig. 4. The Fox and Wallace
curves are seen to follow the curves of Fig. 2 up to K
values of about 0.6 and 0.4, respectively, and then lie
below them, but maintain the same general shape.
The discrepancies between the Fox and Wallace theory
and the present theory increase with K and al, as
expected from the approximation in Eq. (11) relating
the two theories.

The perturbation analysis of Keck and Beyer also
yields functions of the product aL and of the reduced
distance K. A calculation of the second harmonic from
their result for the cases aZ=0.185 and 0.370 is shown
in Fig. 4. It is evident that there is fairly good agree-
ment between the present calculation and their results,
with the discrepancy increasing as aL increases.

There remains some question concerning the exact
interpretation of the reduced variable K. For the
dissipationless case, the value of X corresponding to a
given K value is computed on the basis of the initial
fundamental pressure. It might equally well be regarded
as based on a fundamental pressure component which
varies with distance in the manner predicted by Eq. (7).
On this interpretation, one may expect the K(X)
relationship to depart from linearity as the fundamental
frequency component of the pressure is absorbed, and

4
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mental pressure.
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the degree of departure could be estimated numerically.
The dependence of the harmonic pressure on distance
would then become a more complicated function than
Eq. (17), as the value of L to be used in Eq. (16)
would be regarded as a function of the distance. In
order to avoid difficulties of this sort, the first experi-
mental verification should be made for small aL values
(large pressure), with L treated as constant as an
approximation.

;J"
2 >
= ]
FiG. 4. Sedcond harmor(lic ,/ ™
as predicted by . (D) (k) I aLs370
(dashed line), as ];:eqdicted %'@ /”{b ™
by Eq. (15) (solid line), A e

and as predicted by Keck
and Beyer (dotted line).

Equation (10), on the other hand, may not hold in
the case of very small L values. One may, therefore,
hope to find a region between these two extremes where
Eq. (17) describes experimental data. An experimental
investigation is planned in the near future.
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Section IV. page 22.

Optical Method for Ultrasonic Velocity
Measurcmenvs at Liquid-Solid Boundaries
by
Walter G. Mayer and 5ohn F. Kelsey

Abstract. An optical method is used to measure
the energy ratio of reflected and incident ultra-
3onic waves at a liquid-solid interface. The
ultrasonic veloclities in the solid are calcu-
lated from the angles of maximum reflection in
the liquid.

The intensity ratio of reflected to incident ultrasonic
waves at a liquid-solid bouncdary as a function of angle of incidence

is given by Erginl as

RS

BV, [coaB - Acsen (1-8)7° -
Noded L("';c: > A‘J‘s’\'\1-g‘j'

-

where 2 1s the angle of 1ncidence 1n the liquid measured from
a line normal to the interface, 5and ¥ are the angles of
refraction of the longitudinal and shear wave in the solid.
The quantities A and B arc defined by

A

pQVL/ ple ’ (2)

f" = 1 S B A "‘\,Cf = / / \ - |,
s x-osy - A ot (3)

where Py and Py are the densities of the liquid and the solid,
respectively, and VI is the velocity of the incident wave in
the liquid; VL and VS are the velocities of the refracted long-
itudinal and shear waves in the solid.
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Substituting accepted values for the densities and
velocities of water and Plexiglas in eq. (1) one obtains the
curve shown in Fig. la for the intensity ratio (R/I)a. Figure
1b shows this ratio for a water-aluminum boundary. The ultra-
sonic wave 1s incident in the water in both cases. In order
to obtaln thesc curves one has to use the appropriate angles
B and y for a given angle of incidence x . These angles are
found from Snell!s law

v/
VI/VS sinx/sin .

sinx/sinf3,
; (4)

It can be seen from eq. (4) that sin~ = VI/VL or sinx =
VI/VS at the critical angles for the longitudinal and shear
wave where sin 8 or siny equal unity. One can obtain V and
Xﬁ if Vi is known provided the critical angles can be located
Lnuation (1) and Fig. 1 show that the ratio (R/I)2 = 1 at the
criltical angles. The assoclated peaks in the intensity of the
reflected wave can be located experimentally and can be used to
calculate VL and VS for the solid2

An optical method is used to find the angle of
incidence at which the intensities of the reflected and
incident beams are equal. The arrangement is shown in Fig. 2.
The solid sample and the transducer are placed in a tank filled
with water. While the angle of incidence is changed by rotating
the transducer the sample 1s also rotated in such a manner that
the reflected sound beam remains at right angles to the collimated
light beam. The reflected ultrasonic wave produces a diffraction
pattern in the plane of the photomultiplier. The light intensity
in the nth order of the diffraction pattern is given by

I, = 3(v), (5)

where v 18 proportional to the amplitude of the ultrasonic wave
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producing the diffraction pattern. Keeping the output of the
transducer constant and measuring the light intensity in the

zero order one finds a prounounced dip at that angle of incidence
where the reflected ultrasonic wave is most intense. Figure 3a
shows the zero order light intensity for a 8 Mc continuous ultra-
sonic wave reflected from a water-Plexiglas boundary. For con-
venience the intensity of the incident wave 1s kept low enough

so that the zero order Bessel function is positive for all
possible values of v of the reflected wave. The critical angle
is located at 53.50 from which one finds VL = 2700 m/sec, using
eq. (4). The velocity in water, VI’ can be determined by measur-
ing the spacing between the lines of the diffraction pattern
produced by the reflected wave in the liquid. Figure 3b shows
the intensity of the reflccted wave obtained from the data given
in Fig. 3a. The theoretical curve predicted by eq. (1) is also
given.

The same technique 1s used to measure VS if VS > VI'

In this case the light intensity in the zero order reaches a
minimum at the critical angle for the shear wave and remalns

at that level. An example is given in Fig. 4a which shows the
measured light intensity in the zero order produced by a wave
reflected from a watcr-glass boundary at angles in the vicinity
of the critical angle for the shear wave. The corresponding
intensity of the reflected wave is shown in Fig. 4b. The critical
angle for the shecar wave 1s 25.40 corresponding to a shear wave
velocity of 3445 m/secc.

It should be noted that this analysis does not include
surface waves or plate transmission phenomena. The method given
here has the advantage that the veloclty of the longitudinal and
shear wave in the solid can be calculated without having to
observe the waves in the solid directly.




References:
1. K. Ergin, Bull. Seism. Soc. Am. 42, 349 (1952).
2. W. G. Mayer, J. Acoust. Soc. Am. 32, 1213 (1960).

List of Figures:

Fig. 1.
Fig. 2.
Bl 5.
Fig. %.

Intensity ratio of reflected to incident wave as a
function of angle of incidence for (a) a water-
Plexiglas boundary where Vg < Vi < V and (b) a
water-aluminum boundary where VI < VS < VL'

Diagram of the optical arrangement.

Critical angle for longitudinal wave in Plexiglas.
(a) zero order 1light intensity in diffraction pattern
produced by reflected wave in water. (b) correspond-
ing values of (R/I)?. Solid line shows theoretical
values.

Critical angle for shear wave in glass. (a) zero
order light intensity in diffraction pattern produced
by reflected wave in water. (b) corresponding values
of (R/I)°. Solid line shows theoretical values .




e TR

(b)

(a)

Page 26.

49

~

12

! i '

Q

o~

) (o)

\\ "\

10

L3}
i L 1]
(9]
DT et OO Z
O w

‘12 a
(W)
z

w

(o]

49 w
-
O
r4
[ L A 0 ! L i . <

o]
3 8 3 31031578

9 I
(AD¥aN2) NOILOINITS | Nooyay

THIS PAGE LS BEST QUALITY PRAOTICABLE
FRUM COr ¥ FUAMISHED TO DDC

r-gufﬁ i




A

Page 27.

——
Photomuttiptier

\ Transducer

\
\

&,

_ A
\ 5 A
vy o
\ g
(vad
N :

A

2

TS PAGE 1S BEST QUALITY PRAGTIGABLE
st 000 Y FUMBISHIEED TO DDC




Page 28.

it

o
34 35 3o

0 -

TP SRPIOR WISV NS RSNV SO P .L...a.._.l-..___J

-

ANeTE OF m?:pgu?& 33

(%) NOWLD3IN4AY AD¥INI m
L)
&
N be-
N
O\
Mo ;
0\
= Q\so il o~
3 :‘o
o”'o’ 41
/’
7
o Ry
/
,l
v — + A 4 4 + + -+ =
o o g o) [9)
= o N o

(%) ALISNILNI LHY D

™S PAGE IS ARST QUALITTY PRACT LORAIE
oM O0rY ka5 TU o -4




‘i n::m.uu

Pege 29.

IINAQION JO FIYNY
L we g o ¥r %t Jt B ST ¥ €T TT
{ Y ] v T m T " T 1 r
A -
| 2 b =
i ] W ggerg £
; A W
9 ” rO < m
- II N
N ¢ ~ ¢
m H 10’
+ 2 _ ~-0-- 409 X
H c
' 2 g M\”
iz =
M o < s £ om
q o
;
) (v)




Appendix to Section IV. page 30.

Notes on Reflection from Liquid-Solid
Interfaces (Energy Relations)
by
Walter G. Mayer

If a plane longitudinal wave impinges on a
liquid-solid boundary the wave is reflected and refracted
at angles which are defined in Fig. 1. For incidence in
the liquid the ratio of the energy of reflected to incident
wave as a function of the angle of incidence is given by

Ll | 'cosi® - A cos -/ (1 -§)>?2
R\ e ! ¢ . E) (lA)-
kI] ,cos /' + A cosec.(1 -B) |
where
A= p, vL/ PV (24)
B = 2 sin; sin 2, [cos& -(VS/VL)cosﬁ-]. (34)
Snell's law is valid, 1.e.
A4 sinv V. sin - .
I = i 2 = (4A)
A\ sin 3 Vs sin’,

Supposing that all the possible velocities are
known and one plots (R/I)2 from eq. (1lA) one obtains graphs
similar to Fig. 2A, provided VI < VS < VL' Four points or
regions are of special interest:

(1) At = = 0 the reflection formula (1A) reduces to
/nf

1 «R71* = (paVe = paV e
TFE 211 - fen . (sA)
- LPR'T PaVL |

This 1s the well-known reflection formula for normal in-

cldence.
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(2) At critical angle i where longitudinal wave in solid
R=90°. (Point L in Fig. 2A).

i

cuts off, i.e.

(3) Beyond critical angle for longitudinal wave where
according to eq. (4%A) sin > > 1. (Points L to S in Fig. 24).

(4) At critical angle ¥\ where shear wave in solid cuts
off, 1.e. siny = 1. (Point S in Fig. 2A).

WA W W I KN X NN

To (1) : No shear wave is present in solid.

To (2) : With #= 90°, cos » = O in eq. (1A) and (R/I)? = 1
This means there 1is total reflection, no shear wave present
in solid despite the fact that siny is still real.

To (3) : From eq. (4A) firnd that sin:4 > 1. To find
(R/I)2 for this region one can use the following method:
Rewrite eq. (1A)

'R 2 -|cos 3 (1-2AD cos sin ¥'sin 2 ¥ ) -Acos> (1-2cosisin X sin2y) =
= cos 2 (1+2AD cos « sin ysin 2 x7 +Acos x (1-2cosysin gsin?x)

(I
(6a)

with A given by eq. (2A) and
AD = p2VS/ ple .

To find cos s in cases where sin 3 > 1, one can use (with

sin (e1 +192) = 8in®,c08h0, + icosd,sinhG, =

1 x cosh 0, + 1(0).

TR

£
!
4
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?1 Example: Supposing that from Snell+s law eq. (4A),

4 sing = 1.0095, one therefore takes cosh 6,
1.0095. From tables one finds that if cosh
1.0095 the corresponding sinh = 0.1375, and
from trigonometric identities this means that
cos B = 0.13751.

One has a complex quantity in eq. (6A), which 1is solved
by taking the complex conjuzate.
Then one has essentially

;I (1a + b
e

Now use ; + ﬁg as result for (R/I)2 in region L to S.

(4) At this point cos[* is imaginary. Also y = 90°,
therefore, siny = 1 and sin 2y = 0. This reduces eq. (1a)

Lo /m\a 1cos > = Acosd ;2
&T) lcost— + Acoso |
or, in general terms,
’ 1a - bi°
Ta + b!
o a2 - b2 + 21ab‘;2
Kag + béz \a§+b§,

Then the absolute value of (R/I)2

= 1.

l"IR)al o (2% - 62)2 4 4?2 - a2 +b2)2
(a® 4f_§52 +b

Therefore, total reflection of incident energy at the
critical angle for the shear wave. No energy present in solid
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Section VI. page 34.

Measurement of the Sound Pressure Amplitude
in Transparent Solids

by
K. Achyuthan and M. A. Breazeale

When a sound wave propagates through a substance
it produces periodic variations in the density. In trans-
parent substances, associated with these density variations
are variations in the index of refraction. Therefore, one of
of the methods for determining the amplitude of the pressure
wave 1s to measure the amplitude of the index of refraction
varliation. This can be done by observing how light is dif-
fracted when it passes through the sound beam under consider-
ation. If this sound beam 18 passing through a liquid, then
relatively straightforward measurements can give one a value
for the sound amplitude. If, on the other hand, the sound
beam is passing through a solid the situation can be more
complicated. This complication is attributable to the fact
that solids exhibit stress birefringence. Thus, the state
of polarization of the light must also be considered. What
we would like to point out 1s that if one does consider
the polarization of the light he can find special conditions
under which the theory for the diffraction of light by
ultrasonic waves in solids is almost as simple as that in
liquids, and thus, it is possible to use the same procedure
for measuring the sound amplitude in solids as in liquids.
One difference is that the frequency range for the validity
of the simplified diffraction theory of Raman and Nath is
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higher in solids than in 1liquids because of the higher
sound velocity. For example, we will be considering measure-
ments made in glass at 10 megacycles. For various reasons
the diffraction theory becomes complicated at this frequency
for liquids.

The optical arrangement is shown in Figure 1.
The arrangement is the same as that used with liquids except
for the use of the polarizer and the wollaston prism. The
wollaston prism splits the light into two beams, one of which
is polarized parallel to the sound wave fronts, the other
perpendicular to them. It turns out that with light polarized
parallel to the sound wave fronts or perpendicular to them,
there 1s no rotation of the plane of polarization. The
simplification introduced by satisfying these polarization
requirements can be seen:

SWR = 1
For odd orders m = 2S + 1

) cosa(e-q) +

s+r+1(v1

& r
I,= 2 f (~Js-r(v1) J

T4

JS-r(Va )Js+r+1(v2 ) sin2 (e-a) ’

With polarized light

I{It) =235 [Js-r(vl) J'ss+r-+1("1)] .

© Q © X
]
X

) e 22 [0, ) 3,0t
r
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If the incident light is polarized at an arbitrary
angle o( , then the diffracted light is in general rotated
through an angle 6. Under this condition the intensity of
light in the odd diffraction orders 1is given by the first
expression, where the J's are Bessel functions. As indicated,
this expression is valid for a standing wave ratio of unity.
This condition is fulfilled in the experimental situation
since the wave 1s for all practical purposes 100 per cent
reflected at the surface of the glass.

This general expression can be used to calculate
the diffracted light for an arbitrary angle of polarization.
If, however, the angle of polarization is either zero or
90°; i.e., if the polarization is either parallel to or per-
pendicular to the acoustic wavefronts, then there is no
rotation of the plane of polarization, and the simpler
expressions can be used.

In our measurements we chose to measure the light
in the first order of the diffraction pattern whose plane
of polarization is parallel to the wave fronts. Then, taking
the expression whichh is second from the bottom we find that
it 1s necessary to evaluate only two terms for an accuracy
of better than 1 pér cent, which is the accuracy of the
photomultiplier. These two terms are:

I, (1) =2 [Jg(vl) 35(vy) + Jivl.rg(vl)]

2
v= 2 Iy,L " 2”{‘0 L qP
A SE7A

/11 = amplitude of Index of refraction charge

Jlo = Index of refraction

L = Width of Sound beam

)l = 1light wavelength = strain optical constant
(‘ = density P = sound pressure amplitude
¢ = Sound velocity
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As can be seen, the argument V of the Bessel func-
tions is a linear function of the pressure. Therefore,
determining the light intensity at some convenient reference,
for example, at a particular voltage on the quartz transducer,
one finds on the curve given by the product of the Bessel
functions the corresponding value of V. From this the pres-
sure amplitude P can be determined.

In the expression for the relationship given
between V and P all the quantities can be determined in a
straightforward way except q, the photoelastic constant.
This quantity was determined by use of the results of both
ultrasonic and static measurements.

For glasses there are only two photoelastic
constants. In order to determine ¢, one measures first
the ratio of these constants by use of the ultrasonic tech-
nique of Mueller. This ratio is related to the intensity
of light in a diffraction pattern when the plane of polari-
zation 1s parallel to the direction of propagation of the
ultrasonic wave relative to that when it is polarized
perpendicular to it. The use of the wollaston prism simpli-
fies these measurements.

The second measurement is made by use of a Babinet
compensator. One measures the stress birefringence, which
is a measure of the difference between the photoelastic
constants. From the measured ratio and differcnce the value
of q can be determined. Thus, we have all the quantities
necessary to relate the pressure amplitude to the V-value.

We have made measurements on two glass samples in
order to determine the range of applicability of the method.
The samples were excited near resonance by a 10 mc quartz
transducer. The light intensity in the first diffraction
order was measured and was plotted as a function of quartz
voltage. Superimposed on this curve was plotted the function
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I = Jﬁ(v) Ji(v). The results for one sample are shown in
Fig. 2. Measurements were made on four different occasions
in order to determine the reproducibility of the measurements.
The scatter of the points is an indication of this.

The reproducibility of the measurements is affected
by two factors: temperature increase and frequency drift.

An increase in temperature in the sample changes the sound
velocity, and hence the wavelength. This in turn affects the
standing wave pattern. Frequency drift in the oscillator

has the same effect. This, of course, can be diminished by
use of a more stable oscillator.

In the measurements it was observed that a greater
reproducibility and greater accuracy was obtained when the
frequency was not exactly on resonance. This is understand-
able since at resonance the amplitude is so highly dependent
on frequency. By getting off the steep portion of the reson-
ance curve accuracy of the measurements was increased, yet
the acoustic energy transmitted into the sample was still
great enough to be measured.

In Fig. 3 1s shown a calibration curve for the
particular sample used. This curve was obtained from the
previous one by using the scaling factor between quartz volts
and v-value. The points are the same experimental points
plotted with the different ordinate. Since the value of V
is proportional to the sound pressure amplitude, this quan-
tity i1s also indicated on the ordinate. In this particular
sample the energy density at a v-value of 0.5 is of the order
of 4 ergs/cmB. :

The scatter of the data gives an indication of the
random error involved in measuring the quartz voltage and in
keeping the oscillator tuned to the exact frequency. This
error and the systematic error introduced in the determina-
tion of the value of the photoelastic constants constitute
the two main sources of inaccuracy. It is to be emphasized
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that the accuracy of the measurement is dependent of the
sample used, the ratio of the photoelastic constants being
the determining factor. If this ratio is large, then the
accuracy in determining q is greater, and hence the accuracy
in determining the pressure amplitude is greater. For this
sample the value of the ratio of the photoelastic constants
was 1.11, a fairly low value. For these measurements there-
fore, including both random and systematic error, an accuracy
of about 30 per cent is to be expected.

On another sample the accuracy was greater because
of a larger value of the ratio of the photoelastic constants.
With a value of this ratio of 1.36, the overall accuracy
turned out to be 16 per cent. Measurements of the light
intensity as a function of quartz voltage are given in
Fig. 4. These measurements were made with the sound on for
very short intervals to avoid heating the sample and causing
the standing wave pattern to change. Thls procedure has
improved the scatter of the experimental points. Neverthe-
less, at high quartz voltages the experimental points do
fall below the theoretical curve because of heating. This
can be seen better in Figure 5 which shows the pressure
amplitude plotted as a function of quartz voltage. At high
voltages the experimental points tend to drop below the
straight line. This actually means that at high voltages
the standing wave pattern 1s different from that at low
voltages, so one should expect only an approximately linear
relationship. It also points out the sensitivity of the
method to small changes in the standing wave pattern.

(V = 0.2 corresponds to energy density of 3.2 ergs/cmB.)
This, then, is the way to measure the sound amplitude in
solids. With the supplementary Babinet compensator measure-
ments it is an absolute method. Without them it gives
relative values.
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iin e

In conclusion, it may be observed that this method
can be used to measure the sound amplitude in crystals.
In such a case, however, it is necessary to use the correct
pair of photoelastic constants, since for crystals one must
use more than two constants to describe the photoelastic
behavior.
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